Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models
نویسنده
چکیده
The cluster variation method (CVM) is a hierarchy of approximate variational techniques for discrete (Ising–like) models in equilibrium statistical mechanics, improving on the mean–field approximation and the Bethe–Peierls approximation, which can be regarded as the lowest level of the CVM. In recent years it has been applied both in statistical physics and to inference and optimization problems formulated in terms of probabilistic graphical models. The foundations of the CVM are briefly reviewed, and the relations with similar techniques are discussed. The main properties of the method are considered, with emphasis on its exactness for particular models and on its asymptotic properties. The problem of the minimization of the variational free energy, which arises in the CVM, is also addressed, and recent results about both provably convergent and message-passing algorithms are discussed. PACS numbers: 05.10.-a,05.50.+q,89.70.+c Submitted to: J. Phys. A: Math. Gen. E-mail: [email protected] Cluster Variation Method 2
منابع مشابه
Rule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملMathematical structures of loopy belief propagation and cluster variation method
The mathematical structures of loopy belief propagation are reviewed for graphical models in probabilistic information processing in the stand point of cluster variation method. An extension of adaptive TAP approaches is given by introducing a generalized scheme of the cluster variation method. Moreover the practical message update rules in loopy belief propagation are summarized also for quant...
متن کاملA Probabilistic Relaxation Framework for Learning Bayesian Network Structures from Data
Graphical models have been very promising tools that can effectively model uncertainty, causal relationships, and conditional distributions among random variables. This work proposes a new probabilistic method for learning Bayesian network structures from data. In the proposed method the existence of an edge in the network is no longer considered as a hard or deterministic issue, but rather we ...
متن کاملGraphical Models, Exponential Families, and Variational Inference
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimizati...
متن کاملA probabilistic graphical model approach to stochastic multiscale partial differential equations
We develop a probabilistic graphical model based methodology to efficiently perform uncertainty quantification in the presence of both stochastic input and multiple scales. Both the stochastic input and model responses are treated as random variables in this framework. Their relationships are modeled by graphical models which give explicit factorization of a high-dimensional joint probability d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cond-mat/0508216 شماره
صفحات -
تاریخ انتشار 2005